We need to talk about GROUND

Follow this link to watch on YouTube

James Pawson - Unit 3 Compliance

@ Rohde & Schwarz "Demystifying EMC" 2020

Unit 3 Compliance

A lack of clarity

Grounds = 6

Grounds = 11

Taxonomy of ground

(from an EMC perspective)

1) Does it normally carry current?

Ground as an equipotential

What happens when we close the switch?

Signal ground current

Ground is not a sink

Ground is not a sink

we come back

Safety ground current? No.

Safety ground current? Yes.

2) What is the frequency of this current?

Current Flow Example

Current Flow Example

DC Current Flow

$$R = (\rho l)/xsa$$

500 Hz

50 kHz

500 kHz

5 MHz

$$R = (\rho l)/xsa$$

$$R = (pt)/xsa$$

Impedance,
$$Z_L = 2 \pi f L$$

$$L = (\mu N^2 A) / \ell$$

High frequency current flow

So what?

Remediation 1

A good return for every signal

For every signal!

Time to bust some EMC myths

Let's blow up some misconceptions

"Could we just connect it to a quiet ground / to earth to see what happens?"

Where is this "quiet" ground?

Where is this "quiet" ground?

"I'm trying to avoid creating a ground loop"

Ground Loop

Typical LF Ground Loop

HF Ground Loop = Insignificant

Fixing LF Ground Loops

When "Ground Loops" Bite

"I've put a capacitor / ferrite bead / resistor in series with my cable shield"

Cable Shield Ground Currents

Additional Impedance

Bad For Emissions

Bad For Immunity

"I've only connected the cable shield at one end."

Which end to connect the shield?

"The mounting holes are floating and not connected to the ground plane"

Metal Chassis Mounting Hole Currents

Removed Direct Connection

Existing Chassis Bond

Importance of Connecting Cable Shield

"I need to provide a separate analogue ground plane"

Separate grounds on IC datasheets

Separate grounds on IC datasheets

MAX11192

5 MHz

500 Hz ADC

This is a system design problem, not an EMC problem.

Design Partitioning

Vertical Partitioning

Splitting Grounds

Splitting Grounds

Splitting Grounds

Q: What do you call an engineer who splits a ground plane?

A: A customer

Back down to earth.

Ground vs power as reference planes in PCBs

Shielding

Decoupling

Resonance in ground

ΔI noise and ground bounce

Did not cover:(

Ground maps

Grounding in larger systems

PCB stackups

Hybrid grounds

Where does the current flow?

Ambiguity "Protective Earth" "DC negative" "Bond" or "connect x to y" "PCB ground"

Connect on LinkedIn

@ James Pawson

Thanks:)

Questions?

Come and have a chat > exhibition area

hello @ unit3compliance.co.uk

@ James Pawson

