

Wurth Electronics (UK) Ltd

Practical EMI Filter Design Considerations – Part 1

19th September 2017

Presented by

Mohamed AlAlami
Field Application Engineer - UK

Agenda

- Magnetics and Materials
- EMI Transmission Modes and Filter Topologies
- REDEXPERT
- Practical EMI Filter Design Considerations

MAGNETICS AND MATERIALS

What is an Inductor?

- ... technical aspect
- a piece of wire wrapped on something

We also see inductance ...

- as parasitic effects
 - What are the main difference between these inductors?

THE INDUCTOR IS USED TO STORE THE ENERGY

- DC/DC converter topology
 - Buck
 - Boost
 - Sepic

Inductors/Ferrites

- Shape & size : Different construction
 - THT, or SMT
 - Toroidal , Solenoidal (Rod core), Multilayer
 - Shielded or not shielded
 - Wire (Round, Flat, Multi-wire,..)

- Different material
 - NiZn
 - MnZn
 - Iron alloy
 - Superflux
 - WE-Perm
 - WE-Perm2
 - Iron Powder

Core Material - Permeability

Rod core ferrite

material-

current-

Pressure-

frequency-

temperature-

Ring core ferrite

Induction in air:

$$B = \mu_0 \cdot H$$

linear function, because $\mu r = 1 = constant!$

The relative permeability is a:

Induction in a ferrite:

$$B = \mu_0 \cdot \mu_r \cdot H$$

-dependent parameter

Date 19.09.2017 | Technical Academy | Public | EMC

Core Material - Permeability

Relative permeability

 describes the capacity of concentration of the magnetic flux in the material

$$\mu_r = \frac{1}{\mu_0} \frac{\Delta B}{\Delta H}$$

Ferrite material

- unordered (random position)
- soft magnetic

Permanent magnet

- ordered
- hard magnetic

Typical permeability μ_r:

Iron Powder/ Superflux: 50 ~ 150

Nickel Zinc (NiZn): 40 ~ 1500

Manganese Zinc (MnZn): 300 ~ 20000

Core Material – Permeability

=1 turn

Core material-Parameter

Replacement circuit

$Z = \sqrt{R_{(f)}^2 + X_L^2}$

Core Material – Permeability

Core Material – Resistance

Core Material – Inductance

Core Material – Saturation/Frequency

Core Materials	Core Loss	Perm f(DC bias)	Relative Cost	Frequency Range	Saturation Flux density (B _{sat})	Temp Stability
Iron Powder	Highest	-	Lowest	200kHz	15.000 Gauss (1,5 Tesla)	-
Ni Zn	Lowest	_	Low	10MHz	4.500 Gauss (0,45 Tesla)	-
WePerm	Low	++	Low	3 MHz	10.000 Gauss (1.0 Tesla)	++
SuperFlux	Medium	+++	Medium	1.0 MHz	12.000 Gauss (1,2 Tesla)	+++

Switching Frequency ⇔ Core Material

INDUCTOR / inductance

= relative permeability

= No. of turns

= effective magnetic area = effective magnetic length

Higher leff Lower L

Core Material – Shielding

Advantage of the shielded inductor => smaller Gap

- ⇒ Less turns to reach the L value => Lower DCR compare to a open version
 - ⇒ With big air gap the inductance is less dependent of the core material

EMI TRANSMISSION MODES AND FILTER TOPOLOGIES

Date 19.09.2017 | Technical Academy | Public | EMC

EMC Impact

Economical point of view:

Dependent on when EMC conformity is considered in a design phase

What causes EMI in a product?

Clock frequencies. E.g Crystal 25MHz,
 CPU 2.6GHz

Data rates. E.g USB 2.0 480Mbps, SATA II 300Mbps

 DC/DC convertors and Switch mode power supplies (SMPS) E.g 135kHz, 2MHz

Transmission modes

Recognize the transmission mode:

Differential Mode (DM)

Signals on a line(s) with a return path

Common Mode (CM)

Noise on all lines propagating in the same direction with respect to earth

EMC – Coupling

→ Primary procedure

...to aim to source a low noise

→ Secondary procedure

... eliminate the noise through interrupting the coupling way

→ Tertiary procedure

... increase the noise immunity at load

Insertion loss – Mathematical Definition

System attenuation

$$A = 20 \cdot \log \frac{Z_A + Z_F + Z_B}{Z_A + Z_B}$$

Impedance

$$Z_F = \left[10^{\frac{A}{20}} \cdot \left(Z_A + Z_B\right)\right] - \left(Z_A + Z_B\right) \quad in \ (\Omega)$$

Insertion loss – Differential Filter Topologies

Source Impedance

low

high

high or unknown

low

low or unknown

Load Impedance

high

high

high or unknown

low

low or unknown

→ small C = higher SRF

Choose ferrite bead

= build no resonance with C

= broadband filter

Pay attention to: SRF of used components

Filter topologies – Demo board

Parallel-C-filter

L-filter

LC-filter

• Π-filter

T-filter

Filter Topologies – LT Spice Simulation

L-filter

- A chip bead ferrite is used as an inductance.
- WE-CBF 742 792 093:

$$Z_{\text{max}} = 3000\Omega @ 80MHz$$

$$A = -29 dB @ 80 MHz$$

Simulated

Measured

Filter topologies – Parallel-C-filter

Parallel-C-filter

100n

 Comparison of measurement and simulation

$$f_{\rm res} = \frac{1}{2\pi \cdot \sqrt{L_{\rm s} \cdot C}}$$

Example:

$$L_{\rm s} = 1 {\rm nH}$$

$$f_{\text{res,C3}} = 15.915 \text{MHz}$$

LC-filter

Comparison of measurement and simulation

WE-CBF 742 792 093

C = 100 nF

Date 19.09.2017 | Technical Academy | Public | EMC

Avoiding inrush current damage to SMD ferrite beads

Avoiding inrush current damage to SMD ferrite beads – Option 1

- Safety for SMD ferrite against inrush/pulse current
- Not a PI-Filter

Avoiding inrush current damage to SMD ferrite beads – Option 2

- Use inrush current (pulse) rated SMD ferrite (WE-MPSB)
- Preferred solution as:
 - High impedance termination

• π-filter

Comparison of measurement and simulation

WE-CBF 742 792 093

 $C_1 = 1nF$

 $C_2 = 100 nF$

Simulated Measured

T-filter

Comparison of measurement and simulation

WE-CBF 742 792 040

WE-CBF 742 792 093

C = 100nF

Simulated Measured

Common Mode – Signal propagation

Noise mode:

- Common mode noise
- Differential mode noise

Common Mode Choke – Principle of Operation

It is a Bi-directional filter

- From device to outside environment
- From outside environment to inside device

Intended Signal - Differential mode

Interference Signal (noise) – Common Mode

Conclusion:

- "almost" no affect the signal Differential mode
- high attenuation to the interference signal (noise) Common Mode

Date 19.09.2017 | Technical Academy | Public | EMC

Common Mode Choke – Advantages

Filter with two inductors

Filter with CMC

Filter input Filter output

Filter input Filter output

- Signal not affected
- Noise attenuated even close to the signal frequency

Common Mode Choke – USB application

Common Mode Choke – USB application

Increase Z

 $CM \rightarrow 32 \text{ Ohm}$ DM $\rightarrow 0.7 \text{ Ohm}$

@ 12 MHz

 $CM \rightarrow 363 \text{ Ohm}$ $DM \rightarrow 1 \text{ Ohm}$ @ 12 MHz

 $CM \rightarrow 41 \text{ Ohm}$ $DM \rightarrow 0.7 \text{ Ohm}$ @ 12 MHz

 $CM \rightarrow 77 \text{ Ohm}$ $DM \rightarrow 1 \text{ Ohm}$

@ 12 MHz

Increase Z

REDEXPERT

REDEXPERT

User Interface

www.we-online.com/redexpert

Date 19.09.2017 | Technical Academy | Public | **EMC**

PRACTICAL EMI FILTER DESIGN CONSIDERATIONS

Date 19.09.2017 | Technical Academy | Public | EMC

Common Mode Filter Design

With Chassis / EMC Ground

- Power Supply Switching Frequency Considerations (L)
- EMI Higher Frequency Considerations (Z)
- Layout and Tracking
- Capacitor with and without Damping

Common Mode Filter Design

DM (Leakage) Effect

- Load Impact
- Capacitor Damping

Differential Mode Filter Design – Input

- Load Impact
- EMI Higher Frequency Considerations
- Pulse Rating (WE-MPSB)
- Layout and Tracking
- Capacitor Damping and Stability

Differential Mode Filter Design – Output

- Load Impact
- EMI Higher Frequency Considerations
- Pulse Rating (WE-MPSB)
- Layout and Tracking
- Capacitor Damping

Differential Mode Filter Design – Buck Example

Start Up Conditions:

- No EMI Filters on I/P or O/P
- Max Vin = 30V
- Vout = 5V, Min Load 50mA (DCM)
- Actual filter component models used (no ideals)

Differential Mode Filter Design – Buck Example

Differential Mode Filter Design – Buck Example

EMI Filter Design – Recommended Architecture

Thank you

Any Questions

Date 19.09.2017 | Technical Academy | Public | EMC