

Langer EMV-Technik. We work for your future.

Linecard

Immunity

PCB

Understanding Physics behind Emissions

Interactions Between PCB's and Their Surroundings Speaker: Dipl. Ing. Jörg Hacker

- 1 Disturbance Emission Sources
- 2 Magnetic and Electric Coupling Effects
- 3 Pre-Compliance Measurement Methods
- 4 Practical Examples

Disturbance Emission Sources

ICs are the sources of disturbance emission:

- ICs operate with clocked signals.
- The signal's current and voltage create emission via magnetic and electric near-field coupling into an antenna.

Most sources are very small in relation to the wavelength => an antenna is needed.

Radiation depends on the position of the near-field source in the antenna!

Electric Coupling Effects

Radiation depends on the position of the near-field source in the antenna!

Disturbance Emission Sources

Comparison of electric and magnetic field source

Determining an ICs relevant emission parameters by:

- Measuring voltage and current at the IC pin (non load and short-circuit measurements)

non-load voltage
short-circuit current

- Measuring magnetic and electric field above the IC

Disturbance Emission Sources

Relationship between time domain and frequency domain:

Example: digital signal (50% high, 50% low, no DC component):

- 5. harmonic
- 7. harmonic
- 9. harmonic
- 11. Harmonic

$$u(t) = \frac{4}{\pi} \left(\sin t + \frac{1}{3} \sin(3t) + \frac{1}{5} \sin(5t) + \frac{1}{7} \sin(7t) + \dots \right)$$

Sample: magnetic field on a PCB with clocked IC

- closed GND-plane

- power supply
- clock signal

Sample: magnetic field on a PCB with clocked IC

Magnetic field measurement with scanner and probe ICR H500

Sample: magnetic field on a PCB with clocked IC

Magnetic field measurement with scanner and probe ICR H500

Various objects can function as an antenna:

The induction effect in neighboring metal parts causes radiation!

Beware! H2 is often significantly bigger than H1!

Pre-Compliance Measurement Methods

Field measurement with near-field probes

Two different measurement tasks:

qualifying the emission effects big (sensitive) probes to use in a distance to the PCB

magnetic field:

electric field:

- localizing the source small probes for high accuracy to use close to the components

Pre-Compliance Measurement Methods

How emission measurements can be done on the developers desk?

Excitation currents are short-circuited through the reference Ground plate (capacitively)

and measured with an HF-current transformer.

The current path should be shorter than half of the wavelength to prevent standing waves.

Measurement method characteristics:

- total device emission values not possible to measure
- applicable during the development stages only
- useful for quick valuation of modifications
- portable enough to use at the developer's desk

Pre-Compliance Measurement Methods

Practical Examples

Electric Field Source: Step-Up converter

In this example the electric field generated by the boost converter coil determines the emission.

Test setup: ESA1

Practical Examples

Electric Field Source: Step-Up converter

converter coil (high element) acts as an electric field source:

Maybe shielding is needed!

Resonance effects can occur! capacitance between both PCBs and inductance of the connector = resonant circuit

Problem-solving strategy: significant reduction of the inductance by using more connectors (or screws or contact springs) in parallel

